Adaptable approaches to teaching developed by Rafe Sagarin at Duke University and at University of Arizona rely on the same decentralized adaptability that an octopus uses  to increase student participation in class and broaden the source materials for class to include primary literature, new media and the personal experiences of the students themselves.  This video gives an overview of our approach

Rafe Sagarin discusses his adaptable approach to leading and teaching classrooms.

Solving today’s societal challenges requires understanding and knowledge generation from many disciplines using both quantitative and qualitative approaches. To prepare to work with these problems, students must learn in an environment that is more than merely interdisciplinary, but adaptable to changing knowledge landscapes. Classrooms inspired by adaptable processes in nature can support greater autonomy of students over their learning outcomes and make their learning experience a recursive [link] and linked [link] process of growth rather than an isolated exercise.

Unfortunately, almost all undergraduate education is hobbled by a non-adaptable organizational system characterized by the prominent role of a central controller (the instructor). The instructor singlehandedly crafts and issues a pre-determined plan of study to the students, in the form of a course syllabus. Although in many classes students are encouraged, or coerced by participation-based grading, to “take part in discussion,” by design, the discussion is supposed to be limited to the topic designated by the syllabus, lest it “go off on a tangent.” The ultimate effect is a class that lacks responsiveness and adaptability to the dynamic knowledge environments within which today’s students are operating, both within and outside the classroom.  

Our approach to creating an adaptable classroom is committed to vastly enhancing student ownership of the course, harnesses students’ experiential knowledge bases, and uses new but readily available “wiki” technology to facilitate a transition away from instructor- and syllabus-led education.

The development of the adaptive syllabus is initiated during the first class period by asking students a small number of basic questions, such as, “what do you want to learn about within the main course topic?” and, “what knowledge can you contribute to the course?” Responses are organized via a class discussion into central topics for each subsequent class period. The result of this task, which takes less than one class period, is a syllabus created almost completely by the students themselves.

Each subsequent class period is led by a student who assigns reading materials (from the primary or secondary literature, new media sources, agency or NGO reports, or one of their own research papers in progress) to their fellow students via an online course “wiki” 2-3 days before the class. By the night before the class meeting, all other students are required to contribute to the wiki page by posting an article, video, or other contribution related to the main topic with one or two lines of annotation. Because the wiki records the user name and time of contribution, it is easy to ensure compliance with the class expectations.

The effect of an adaptive syllabus is twofold. First, students have ownership over the course.  Educational theorists and practitioners have demonstrated multiple benefits of student ownership in science education, including greater self-direction, self-motivation, improved learning outcomes, culturally relevant learning outcomes, and better matching to the cognitive process of learning itself.
Second, colleges and universities today, both public and private, are often diverse environments with students from a range of socio-economic and geographic backgrounds. Courses developed with students in an adaptive fashion can harness their often-substantial experience in foreign travel, exposure to alternative political and economic regimes, and hands-on laboratory and field research. In a traditional course, the experiential knowledge of students is rarely effectively tapped in the classroom, and, at the extreme, can be viewed as intrusive on the discussion.

By activating multiple semi-independent problem solvers in the shaping of a class period, the information flow is much different than that in a traditional discussion course or seminar (Fig. 1). 


In the traditional classroom (Fig. 1, left, the role of the instructor is well defined and the class period acts as a filter to homogenize the material that all students receive in the same fashion. The source materials are typically small in number, and from a low diversity of sources. For example, a traditionally structured class on “ecosystem-based management” run by Sagarin typically involves a discussion of 2-3 papers per class from the primary literature or from governmental natural resource agency reports (Fig. 1, left). In the alternative classroom model discussed here (Fig. 1, right), a wide diversity and high number of source materials are utilized, and interconnection among students (not just between the instructor and the students) is high.  In this model, the class period is not a filter between the instructor and students, but a dynamic entity created by the students, their interpretations of the materials they and their classmates contributed to the wiki, and the experiences they bring to the class. Students are free to choose from a wide variety of source materials, including variations on previous posts to the wiki or previous classes. Having a wiki space where these contributions can be incorporated into the structure of the course and a discussion space where they can be modified gives the course the same type of recursive growth potential seen in complex adaptive systems.

Experienced teachers will see that there is a lot of overlap with these methods and the emerging interest in “Project-based” or “Problem-based” learning at the K-12 level.  In these methods, the required curriculum is stealthily hidden in projects assigned to students to complete individual or in groups.  Rafe has discussed this linkage with K-12 educators, as summarized in this Prezi.